Low Power System Design

Module 7 (3 hours):
Circuit-level low power techniques and power estimation basics

Jan. 2007

Eui-Young Chung
School of Electrical and Electronic Engineering
Yonsei University
Course Goals

- Understand the Circuit-level low power design techniques
 - Trend of power consumption
 - Circuit design style
 - Transistor and gate sizing
- Understand the cell characterization step for higher-level analysis
 - Cell characterization flow
- Understand the power estimation basics
 - Signal probability
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - SPICE power analysis
 - Power characterization for digital cell library
- Power estimation basics
 - Signal probability calculation
Trend of power consumption

- Power values of processors [ISSCC]
Trend of power consumption

- Problems found on first spin of silicon in 180/130 nm

<table>
<thead>
<tr>
<th>Issue</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Logic Error</td>
<td>43%</td>
</tr>
<tr>
<td>Analog Turing Issue</td>
<td>20%</td>
</tr>
<tr>
<td>Signal Integrity</td>
<td>17%</td>
</tr>
<tr>
<td>Clock Scheme Error</td>
<td>14%</td>
</tr>
<tr>
<td>Reliability Problem</td>
<td>12%</td>
</tr>
<tr>
<td>Mixed-Signal Problem</td>
<td>11%</td>
</tr>
<tr>
<td>Power Problem</td>
<td>11%</td>
</tr>
<tr>
<td>Long Path Error</td>
<td>10%</td>
</tr>
<tr>
<td>Short Path Error</td>
<td>10%</td>
</tr>
<tr>
<td>IR Drop</td>
<td>7%</td>
</tr>
<tr>
<td>Firmware</td>
<td>4%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
</tr>
</tbody>
</table>
Trend of power consumption

Table 9 System Functional Requirements for the PDA SOC-LP Driver

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Technology (nm)</td>
<td>101</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Supply Voltage (V)</td>
<td>1.2</td>
<td>1</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Clock Frequency (MHz)</td>
<td>300</td>
<td>450</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>Application (maximum required performance)</td>
<td>Still Image Processing</td>
<td>Real Time Video Codec (MPEG4/CIF)</td>
<td>Real Time Interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web Browser</td>
<td>TV Telephone (1:1)</td>
<td>TV Telephone (>3:1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric Mailing</td>
<td>Voice Recognition (Input)</td>
<td>Voice Recognition (Operation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scheduler</td>
<td>Authentication (Crypto Engine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing Performance (COPS)</td>
<td>0.3</td>
<td>2</td>
<td>14</td>
<td>77</td>
<td>461</td>
<td>2458</td>
</tr>
<tr>
<td>Required Average Power (W)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Required Standby Power (mW)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Battery Capacity (Wh/Kg)</td>
<td>120</td>
<td>200</td>
<td>200</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

No increase in power consumption required!
Trend of power consumption

- Dynamic vs. Static

![Graph showing the trend of power consumption over years with voltage and technology node on the left and power on the right.](image-url)
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - SPICE power analysis
 - Power characterization for digital cell library
- Power estimation basics
 - Signal probability calculation
Types of power dissipation

- Dynamic power
 - By charging and discharging capacitances
- Short-circuit power
 - Due to the short duration in which both NMOS and PMOS are turned on
- Static power
 - Can be ideally ignored in CMOS, but in pseudo NMOS
- Leakage power
 - Reverse biased PN-junction current
 - Subthreshold channel conduction current
Dynamic power

\[i_c(t) = C_L \frac{dv_c(t)}{dt} \]

\[E_s = \int_{t_0}^{t_1} V_i(t)dt \]

\[E_s = C_L V \int_{t_0}^{t_1} \frac{dv_c(t)}{dt} dt = C_L V \int_{t_0}^{t_1} dv_c = C_L V^2 \]

\[E_{cap} = \int_{t_0}^{t_1} v_c(t)i_c(t)dt = C_L \int_{t_0}^{t_1} v_c(t) \frac{dv_c(t)}{dt} dt = C_L V \int_{t_0}^{t_1} v_c dv_c = \frac{1}{2} C_L V^2 \]

\[E_c = E_s - E_{cap} = \frac{1}{2} C_L V^2 \quad (E_d \text{ is same to } E_s) \]

\[P = E_s f = C_L V^2 f \]
Short-circuit power

- Both transistors are turned on between v_{tn} and v_{tp}
- Factors on short-circuit current
 - The duration and slope of input signal
 - I-V curves of PMOS / NMOS
 - Output loading
- Energy dissipation
 - $E_{\text{short}} = \frac{\beta}{12} \tau (V_{tp} - V_{tn})^3$
 - β: transistor size
 - τ: the duration of input signal
Impact of load capacitance

As output loading increases:

<table>
<thead>
<tr>
<th>Current envelope</th>
<th>width</th>
<th>peak</th>
<th>integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{short}</td>
<td>no change</td>
<td>decrease</td>
<td>decrease</td>
</tr>
<tr>
<td>i_{c}</td>
<td>increase</td>
<td>increase</td>
<td>increase</td>
</tr>
<tr>
<td>$i_{\text{short}} + i_{c}$</td>
<td>increase</td>
<td>increase</td>
<td>increase</td>
</tr>
</tbody>
</table>
Impact of input slope

As input signal slope deteriorates:

<table>
<thead>
<tr>
<th>Current envelope</th>
<th>width</th>
<th>peak</th>
<th>integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{short}</td>
<td>increase</td>
<td>increase</td>
<td>increase</td>
</tr>
<tr>
<td>i_c</td>
<td>increase</td>
<td>decrease</td>
<td>no change</td>
</tr>
<tr>
<td>$i_{\text{short}} + i_c$</td>
<td>increase</td>
<td>decrease</td>
<td>increase</td>
</tr>
</tbody>
</table>
Leakage power

- Leakage mechanisms

![Diagram showing leakage current paths in a MOSFET](image-url)
Leakage mechanisms

- I_1: pn reverse-bias current
- I_2: weak inversion (subthreshold channel leakage)
- I_3: Drain-Induced Barrier-Lowering (DIBL) effect
- I_4: Gate-Induced Drain Leakage (GIDL)
- I_5: punchthrough
- I_6: narrow-width effect
- I_7: gate-oxide tunneling
- I_8: hot-carrier injection
Two major leakage components (I)

- I_1 and I_2 are commonly known
- The others are especially important as process technology advances
- I_1: pn reverse-bias current
 - Minority carrier drift near the edge of the depletion region
 - Electron-hole pair generation (depl. region of the junction)
 - $I_{\text{reverse}} = I_s \left(e^{V_{th}/T} - 1 \right)$
 \[V_{th} = kT / q \]
- Largely depends on
 - Fabrication process
 - Junction area
 - Temperature
Two major leakage components (II)

- I_2: weak inversion (subthreshold channel leakage)
 - Only occurs when the gate voltage is below V_t
 - No horizontal electric field in this case
 - Carriers move by diffusion
 - $I_{sub} = I_0 e^{(V_{gs} - V_i)/(\alpha V_{th})}$
 - I_0 is the current when $v_{gs} = v_t$

- Subthreshold current has become a limiting factor in low voltage and low power chip design
 - Lower threshold voltage
 - Sensitive to temperature
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - SPICE power analysis
 - Power characterization for digital cell library
- Power estimation basics
 - Signal probability calculation
Power and the circuit design styles

- Circuit design styles
 - Nonclocked
 - Fully complementary logic, pass transistor, …
 - Slower, but consumes less power
 - Clocked
 - Domino, DCSL, …
 - Faster, but consumes more power

- Trade-off between performance and power
 - Faster logic consumes more power
Nonclocked - Fully complementary logic

- Aka. CMOS
- Active mode
 - Switching / short-circuit current
 - Glitches or spurious transitions due to different delays through different paths of the circuit
- Stand-by mode
 - Leakage current
 - High noise margin \(\Rightarrow\) can reduce the threshold voltage
 - Performance degrading factor
 - Large PMOS \(\Rightarrow\) Large input capacitance / weak output driving
Nonclocked - NMOS and pseudo-NMOS

- Aka. ratioed logic
- Pull-up resistance is higher than pull-down resistance
- Good for large fan-in gates
- Higher power dissipation than CMOS due to the static current

NMOS

Pseudo-NMOS
Nonclocked - DCVS

- Differential Cascade Voltage Switch
- A differential output signal is available
- Eliminates the static power in the ratioed logic
- \(f(\text{network 1}) = \sim f(\text{network 2}) \)
- Larger switched capacitance \(\Rightarrow \) higher switching power
 - Can be reduced by the sharing between two networks
Nonclocked - Pass transistor logic (PTL)

- AND: connected in series / OR: connected in parallel
- NMOS: good to transmit “0”, but not for “1”
- CPL: Complementary Pass-transistor Logic
 - Different input / output signals
 - Power-delay product is 10% better than CMOS

PTL: AND

CPL: NAND/AND

CPL: XOR/XNOR
Clocked - Domino

- Clock = 0: Output is precharged
- Clock = 1: Evaluated (conditionally discharged)
- Only implements non-inverting logic gates
- Good for large fan-in gates
- Clock switching \rightarrow high power

Domino NAND
Clocked - DCVS

- Differential Current Switch Logic
- Clocked DCVS to reduce the internal node voltage swing
- T2, T3, T6, T7: Static latch
 - Sensing the difference of Q and Q'
- Clk = 0: Precharge Q and Q'
- Clk = 1: T9, T10, T11 switch on
 - T5, T6, T7, T8 are on
 - Q and Q' are discharging
 - Discharging rate given by NMOS tree
 - T5 or T8 is cut off and isolated from the tree
 - Low internal voltage swing / No static current
 - T5 / T8: increase output capacitance, but reduces effective internal capacitance
Clocked - DCSL2

- Output (Q, Q’)
 - precharged low unlike DCSL1 when CLK = 1
- NMOS tree is disconnected by T5 and T8
- Evaluation starts when CLK goes low
- Evaluation starts only after the outputs have crossed V_{tn}
Clocked - DCSL3

- Replace T9 and T10 in DCSL2 by T9
- T9 equalizes Q and Q’ when CLK goes high
- T5, T6, T7, and T8 are on
- Q and Q’ discharge to a voltage that is V_{tn} or lower
Leakage conscious design - SATS

- SATS
 - Self-adjusting threshold voltage scheme
 - Measure the leakage of a representative MOS
 - If the measured value > the expected value
 - Decrease the back bias for NMOS, increase it for PMOS
 - V_{th} will be increased
Leakage concisous design - MTCMOS

- Multithreshold CMOS
 - Uses both high- and low-threshold voltage MOSFETs
 - Active mode: SL is set to high / Sleep mode: SL is set to low
 - The “on” resistance of sleep transistors is small
 - Some designs only use either header or footer
 - Cell-based MTCMOS ➔ area penalty / easy to design
 - Block-based MTCMOS ➔ area efficiency / hard to design
Leakage conscious design - DTMOS

- Tie up the input to the back bias
- Control the depletion area
- See the DTMOS inverter
- **IN = 0**
 - NMOS turn off (normal V_{th})
 - PMOS turn on (low V_{th}) by reduced depletion area
 - Low leakage to GND, while high speed switching
- **IN = 1**
 - NMOS turn on (low V_{th}) by reduced depletion area
 - PMOS turn off (high V_{th})
 - Low leakage to VDD, while high speed switching
Special latches and flip-flops

- Most frequently used elements in digital VLSI
- Two energy dissipation components
 - Clock energy
 - Data energy
 - Clock change rate is much higher than data change rate
 - Focus on the clock to reduce the energy dissipation
- Attempotions
 - Reduce the gate capacitance connected to the clock
 - Reduce or increase # of trs to minimize the unnecessary internal node switching
Example of low power flip-flops

- A cascaded version of two single phase latches
 - Removes the internal phase splitting inverter

- Low power with static latch
 - Data is retained statically
Self-gating flip-flop

- Avoid clock switching when it is not necessary
 - Uses internally generated clock
 - Efficiency depends on the input data rate
Double edge flip-flop

- Uses both clock edges
 - Can reduce the clock speed by half
 - Small area overhead

(a) Single edge triggered flip-flop.

(b) Double edge triggered flip-flop.
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - SPICE power analysis
 - Power characterization for digital cell library
- Power estimation basics
 - Signal probability calculation
Sizing - Inverter chain (I)

- The simplest sizing problem
- Find an optimal length from delay and power perspective

Assumption
- Fixed P/N size ratio for all inverters \(\Rightarrow\) Same rise/fall time
- Fixed stage ratio \(\Rightarrow\) \(K\)

Simple analysis: \(\frac{C_i}{C_{i-1}} = K \Rightarrow \frac{C_N}{C_0} = K^N\)
- \(N = \ln\left(\frac{C_N}{C_0}\right) / \ln K\)
Sizing - Inverter chain (II)

- Delay
 - \(D = NKd = \ln(C_N/C_0) \times (K / \ln K) \times d \)
 - \(d \): intrinsic delay of the inverter under a single load
 - \(D \) is minimized when \(K = e \)

- Power
 - \(P_i = KP_{i-1} \)
 - \(P = IV \)
 - \(V \): unchanged
 - \(I = C(dv/dt) \)

\[
P = \sum_{i=0}^{N-1} P_i = \sum_{i=0}^{N-1} K_i P_0 = \frac{K^N - 1}{K - 1} P_0
\]

\[
P_0 = C_1 V^2 f + \pi S_0 f = Kf(C_0 V^2 + \frac{\tau}{K} S_0)
\]

\[
P_0 \propto K, K_n = C_N / C_0
\]

\[
P \propto \frac{K}{K - 1}
\]
Sizing - Inverter chain (III)

- Power/Delay vs. K

- Delay is minimized when K = e
- Power is approaching to 1 as K increases
 - Higher K means a shorter chain ➔ Less switching capacitance
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - SPICE power analysis
 - Power characterization for digital cell library
- Power estimation basics
 - Signal probability calculation
Circuit-level power analysis

- SPICE is the de facto power analysis tool
 - Simulation Program with IC Emphasis
 - A lot of SPICE related literatures and simulators
 - HSPICE, PSPICE, …
 - The reference for the higher abstraction levels
 - Accurate, but slow

- Recently, faster analysis tools were introduced
 - E.g. PowerMill, Spectre, …
 - Still accuracy is inferior to SPICE
SPICE basics

- Solving a large matrix of nodal current using Krichoff’s Current Law (KCL)
- Primitive elements
 - Registers, capacitors, inductors, current sources, voltage sources
- More complex elements
 - Such as diodes and transistors
 - Constructed from the primitive elements
- Analysis modes
 - DC analysis
 - Transient analysis
SPI CE power analysis

- Can estimate all types of power
 - Dynamic / Static / Leakage
- Not feasible for the entire chip due to the computation complexity
 - Can be used as a characterization tool for higher abstraction level analysis
- Can consider process and other parameter’s variation
 - BEST / TYPICAL / WORST
Discrete transistor modeling / analysis

- To speed up the analysis
 - Lose accuracy

- Typical methods
 - Circuit model
 - Approximate the complex equations into a linear equation
 - Tabular transistor model
 - Express the transistor models in tabular forms
 - Switch model
 - Consider a transistors as a two-state switch (on / off)
Circuit model

\[I_{ds} = f(V_{gs}, V_{ds}) \]

\[\approx f(V_{gso}, V_{dso}) + \frac{\partial}{\partial V_{gs}} f(V_{gso}, V_{dso})(V_{gs} - V_{gso}) + \frac{\partial}{\partial V_{ds}} f(V_{gso}, V_{dso})(V_{ds} - V_{dso}) \]

\[i_{ds} \approx i_0 + g_m v_{gs} + r_{ds} \]

- The linear equation should be numerically evaluated whenever the operating points change.
Tabular transistor model

- Pre-compute a current table
- Look up the table instead of solving an equation
- Table format

<table>
<thead>
<tr>
<th>V_{ges}</th>
<th>V_{dso}</th>
<th>i_{ds}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

- One-time characterization effort for each MOS
- Event-driven appraoch can be used for speed-up
- Nearly two orders of magnitude improvement (speed, size)
Switch model

\[I_{ds} = f(V_{gs}, V_{ds}) \]

\[\approx f(V_{gso}, V_{dso}) + \frac{\partial}{\partial V_{gs}} f(V_{gso}, V_{dso})(V_{gs} - V_{gso}) + \frac{\partial}{\partial V_{ds}} f(V_{gso}, V_{dso})(V_{ds} - V_{dso}) \]

- RC calculation for timing
- Power is estimated from the switching frequency and capacitance
- Further speed-up, but less accuracy
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - SPICE power analysis
 - Power characterization for digital cell library
- Power estimation basics
 - Signal probability calculation
Power characterization for cell library

- Circuit-level power analysis is time consuming
- Need to speed up with reasonable accuracy loss
- Levels beyond gate level will be discussed later
- Partially similar to delay characterization
- Dynamic power
 - Capacitive power dissipation
 - Internal switching power dissipation
- Leakage power
 - Accuracy depends on the model of circuit simulation
 - Iterative analytic estimation
 - Simulation based approach
Power characterization flow

- Accuracy vs. speed
 - Too many input patterns → Too many simulation runs
 - Too many input patterns → probabilistic analysis

```
010110
110111
000100
........
```

- Circuit Simulator → A large # of current waveforms → Average → Power
- Average → Probability Values → Analysis tools → Power
Simulation-based cell characterization

- Parameters
 - Input pattern (logical value)
 - Input slope
 - Output loading capacitance
 - Process condition
- Total # of runs of simulation is the multiplication of the possible number of values of each parameter
 - Some parameters are continuous
 - Input slope, output loading capacitance
 - Piece-wise linear approximation is widely used
 - Process / operation condition: BEST / TYPICAL / WORST
Example: 2-input NAND (1)

- Possible input patterns
 - Dynamic power
 - A | B | C | Power
 - 1 | r | f | ?
 - 1 | f | r | ?
 - r | 1 | f | ?
 - f | 1 | r | ?

- Static power
 - A | B | C | Power
 - 0 | 0 | 1 | ?
 - 0 | 1 | 1 | ?
 - 1 | 0 | 1 | ?
 - 1 | 1 | 0 | ?

8 simulation runs!
Example: 2-input NAND (II)

- Input slope
 - Depending on the predecessor

- Capacitance
 - Depending on the successor
 - Proportional to the # of fan-outs
 - If we consider four points for capacitance

- Total # of simulation runs for a single input
 - \(2 \text{ (rise / fall)} \times 4 \text{ (# of input slopes)} \times 4 \text{ (# of capacitance points)} = 32 \text{ points}\)
Example: 2-input NAND (III)

- Process / operation condition
 - Temperature
 - Process variations such as doping density
 - Typically use 3 conditions are widely used

- Total # of simulations
 - For dynamic power
 - \((2 \times 2) \times S \times C \times P\)
 - For static power
 - \(2^2 \times P\)
Additional factors to be characterized

- Output slope
 - Used as an input slope of the successor
 - Need to know for each simulation point

- Input capacitance
 - Used for computing the total output capacitance of the predecessor
 - Can be estimated by the area of gate (W/L) and t_{ox}
 - Parasitics: C_{gs} / C_{gd}

- All the information should be included in the library
Tool flow

- Library information
- Circuit netlist
- Slope/Cap information

input pattern generator

Circuit simulator

Simulation Analyzer

- Synthesis library
- Library generator
- Simulation library
Contents

- Basics of circuit-level techniques
 - Trend of power consumption
 - Types of power dissipation
 - Power and the circuit design styles
 - Transistor and gate sizing for low power
- Cell characterization for gate-level analysis
 - Power characterization for digital cell library
 - SPICE power analysis
- Power estimation basics
 - Signal probability calculation
Probability-based power estimation

- Pre-requisite to move to module 8
- If we ignore internal capacitance of a logic gate
 \[P_{\text{avg}} = \frac{1}{2} V_{\text{dd}}^2 C f \]
- Parameters
 - C: switched capacitance
 - f : the frequency of operation
 - For aperiodic signals: the average # of signal transitions per unit time
 - Called signal activity
- Our concern
 - How to estimate f in a probabilistic manner
Modeling of signals

- To model the digital signals, need to know
 - Signal probability
 - Signal activity
- $g(t)$, $t \in (-\infty, \infty)$
 - A stochastic process that takes the values of logical 0 or 1
 - Transitioning from one to the other at random times
 - SSS: Strict-Sense Stationary
 - Mean ergodic
 - Constant mean with a finite variance
 - $g(t)$ and $g(t+\tau)$ become uncorrelated as $\tau \to \infty$
Signal probability and activity

- Signal probability

\[P(g) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} g(t) dt \]

- P(g=1) : signal probability

- Signal activity

\[A(g) = \lim_{T \to \infty} \frac{n_g(T)}{T} \]

- \(n_g(t) \): # of transitions of \(g(t) \) in the time interval between \(-T/2\) and \(+T/2\)
Signal probabilities of simple gates

- Assumption
 - g_1, g_2, \ldots, g_n are independent
- Output signal probability
 - Determined by the given boolean function
 - NOT: $1 - P$
 - AND: multiply
 - OR \rightarrow NOT (NOT (OR))

- Inverter
- AND gate
- OR gate
Signal probability calculation (I)

- By Parker and McClusky
- Algorithm: Compute signal probabilities
 - **Input**: Signal probabilities of all the inputs to the circuit
 - **Output**: Signal probabilities of all nodes of the circuit
 - **Step 1**: For each input signal and gate output in the circuit, assign a unique variable
 - **Step 2**: Starting at the inputs and proceeding to the outputs, write the expression for the output of each gate as a function (using standard expressions for each gate type for probability of its output signal in terms of its mutually independent primary input signals)
 - **Step 3**: Suppress all exponents in a given expression to obtain the correct probability for that signal
Signal probability calculation (II)

- Step 3 for protecting recovergent fanout
 - *W/o* step 3, the reconvergent fanout node may have a signal probability higher than 1

- A boolean function f
 - $P(f) = \sum_{i=1}^{p} \alpha_i (\prod_{k=1}^{n} P^{m,k} (x_k))$
 - n: # of independent inputs
 - p: # of products
 - α_i: some integer
 - Called as the sum of probability products of f
Signal probability calculation (III)

- \(P(f) = \sum_{i=1}^{p} \alpha_i \left(\prod_{k=1}^{n} P^{m_{i,k}}(x_k) \overline{P^{l_{i,k}}}(x_k) \right) \)

- \(\overline{P(x_i)} = P(\overline{x_i}) = 1 - P(x_i) \)
- \(m_{i,k} \) and \(l_{i,k} \) are either 0 or 1, cannot be 1 simultaneously

- Canonical sum of probability product of \(f \)
 - \(P(f) = \sum_{i=1}^{p} \left(\prod_{k=1}^{n} P^{m_{i,k}}(s_k) \right) \)
 - \(s_k = x_k \) or \(x'_k \)
Signal probability calculation: Example

- \(y = x_1x_2 + x_1x_3, \) \(x_i, \) \(i = 1, 2, 3 \) are mutually independent
- \(z = x_1x_2' + y \)
- \(P(y) = P(x_1x_2) + P(x_1x_3) - P(x_1x_2)P(x_1x_3) \)
 \(= P(x_1)P(x_2) + P(x_1)P(x_3) - P(x_1)P(x_2)P(x_3) \)
- \(P(z) = P(x_1x_2') + P(y) - P(x_1x_2')P(y) \)
 \(= P(x_1)P'(x_2) + P(x_1)P(x_2) + P(x_1)P(x_3) - P(x_1)P(x_2)p(x_3) - \)
 \(P(x_1)P'(x_2)(P(x_1)P(x_2) + P(x_1)P(x_3) - P(x_1)P(x_2)P(x_3)) \)
- \(P(x_2)P'(x_2) = P(x_2) (1 - P(x_2)) = 0 \)
- \(P(z) = P(x_1)P'(x_2) + P(x_1)P(x_2) + P(x_1)P(x_3) - P(x_1)P(x_2)p(x_3) - \)
 \(P(x_1)P'(x_2)P(x_3) \)
Signal probability using BDD (1)

- BDD: Binary Decision Diagram
- Shannon’s expansion
 \[f = x_i \cdot f(x_1, \ldots, 1, x_{i+1}, \ldots, x_n) + \overline{x_i} f(x_1, \ldots, 0, x_{i+1}, \ldots, x_n) \]
- Cofactors w.r.t. \(x_i \) and \(x'_i \)
 \[f_{x_i} = f(x_1, \ldots, 1, x_{i+1}, \ldots, x_n) \]
 \[f_{x'_i} = f(x_1, \ldots, 0, x_{i+1}, \ldots, x_n) \]
- Example
 \[f = ab + c \]
Signal probability using BDD (II)

- \(P(f) \)
 - \(P(x_1 \cdot f_{x_1} + x_1 \cdot f_{\overline{x_1}}) \)
 - \(P(x_1 \cdot f_{x_1}) + P(x_1 \cdot f_{\overline{x_1}}) \)
 - \(P(x_1) \cdot P(f_{x_1}) + P(x_1) \cdot P(f_{\overline{x_1}}) \)

- A depth first traversal of BDD, with a post order evaluation of \(P(.) \) at every node is required for evaluation of \(P(f) \)
Summary

- Low power is a must
 - Battery lifetime / Thermal problems
- Leakage power is getting dominant
 - Design style also follows the trend
- Solution for delay may not work for power
 - Sizing problem of inverter chain
- Power characterization for higher level power analysis
 - Similar to delay characterization, but different
- Probability-based power estimation is often required
 - Accuracy / speed trade-off
References

- http://public.itrs.net
Assignment

- Study other circuit design styles for low power design
- What are the differences between delay characterization and power characterization?