Course Outline

Hardware Components
- Concept
- Specification

Software Components

HW/SW Partitioning
Estimation - Exploration

Hardware
- Design (Synthesis, Layout, ...)
- Design (Compilation, ...)

Software

Validation and Evaluation (area, power, performance, ...)

Hardware Components: Information Processing

Nikil Dutt

UC Irvine
ICS 212 Winter 2005

Copyrighted Material adapted from Peter Marwedel, Frank Vahid and Tony Givargis
Templates from Prabhat Mishra
Components of Embedded Systems

Memory
- Flash
- DRAM
- Memory Card

Controllers
- FLASH Adapter / Memory Control
- I/O Control
- Ethernet Interface

Processor
- CPU
- JFEG Co-Processor
- Graphics Controller
- LCD Interface
- Video Encoder

Interface
- I2C
- LED
- Bluetooth Module
- Ethernet PHY

Coprocessors
- Camera DSP
- ADC

Converters
- Lens
- A/D
- Camera

Software
- Application Programs

ES: Simplified Block Diagram

A/D converter

sample-and-hold

sensors

environment

information processing

display

D/A converter

actuators
Information Processing

- **ASIC**
- **Processor**
 - Energy efficient
 - Code-size efficient
 - Run-time efficient
- **Reconfigurable hardware**
- **Memory**

Processors

- **What is a processor?**
 - Artifact that computes (runs algorithms)
 - Controller and data-path
- **General-purpose processors (GP):**
 - Variety of computation tasks
 - Functional flexibility and low cost at high volumes (maybe)
 - Slow and power hungry
- **Application-Specific Instruction-set Processors (ASIP):**
 - Tuned for application domain, but programmable
 - Fast and power efficient (compared to GP)
- **Application-Specific Integrated Circuit (ASIC):**
 - Customized hardware for specific task/application
 - Fast, power efficient, minimal area
 - Functional inflexibility and high cost at low volumes (maybe)
General-purpose processors

- **Programmable device used in a variety of applications**
 - Also known as “microprocessor”

- **Features**
 - Program memory
 - General datapath with large register file and general ALU

- **User benefits**
 - Low time-to-market and NRE costs
 - High flexibility

- **Examples**
 - Pentium, Athlon, PowerPC

Application-specific IS processors (ASIPs)

- **Programmable processor optimized for a particular class of applications having common characteristics**
 - Compromise between general-purpose and ASIC (custom hardware)

- **Features**
 - Program memory
 - Optimized datapath
 - Special functional units

- **Benefits**
 - Some flexibility, good performance, size and power

- **Examples**
 - DSPs, Video Signal Processors, Network Processors,...
Application-Specific ICs (ASICs)

- Digital circuit designed to execute exactly one program
 - coprocessor, hardware accelerator

- Features
 - Contains only the components needed to execute a single program
 - No program memory

- Benefits
 - Fast
 - Low power
 - Small size

Application Specific Circuits (ASIC)

- Custom-designed circuits necessary if ultimate speed or energy efficiency is the goal and large numbers can be sold.
- Approach suffers from long design times and high costs.
A digital implementation (gate-level) is mapped to silicon using various layers:
- Full-custom/VLSI
- Semi-custom ASIC (gate array and standard cell)
- PLD (Programmable Logic Device)

Full-custom/VLSI

- All layers are optimized for an embedded system’s particular implementation:
 - Placing transistors
 - Sizing transistors
 - Routing wires

Benefits
- Excellent performance, small size, low power

Drawbacks
- High NRE cost (e.g., $300k), long time-to-market
Semi-custom

- **Lower layers are fully or partially built**
 - Designers are left with routing of wires and maybe placing some blocks

- **Benefits**
 - Good performance, good size, less NRE cost than a full-custom implementation (perhaps $10k to $100k)

- **Drawbacks**
 - Still require weeks to months to develop

PLD (Programmable Logic Device)

- **All layers already exist**
 - Designers can purchase an IC
 - Connections on the IC are either created or destroyed to implement desired functionality
 - Field-Programmable Gate Array (FPGA) very popular

- **Benefits**
 - Low NRE costs, almost instant IC availability

- **Drawbacks**
 - Penalty on area, cost (perhaps $30 per unit), performance, and power
Hardware Design Technology

- The manner in which we convert our concept of desired system functionality into a HW implementation

Compilation/Synthesis: Automates exploration and insertion of implementation details for lower level.

Libraries/IP: Incorporates pre-designed implementation from lower abstraction level into higher level.

Test/Verification: Ensures correct functionality at each level, thus reducing costly iterations between levels.

<table>
<thead>
<tr>
<th>Compilation/ Synthesis</th>
<th>Libraries/ IP</th>
<th>Test/ Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>System specification</td>
<td>Hw/Sw/ OS</td>
<td>Model simulat./ checkers</td>
</tr>
<tr>
<td>Behavioral specification</td>
<td>Behavior synthesis</td>
<td>Cores Hw-Sw cosimulators</td>
</tr>
<tr>
<td>RT specification</td>
<td>RT synthesis</td>
<td>RT HDL simulators</td>
</tr>
<tr>
<td>Logic specification</td>
<td>Logic synthesis</td>
<td>Gates/ Cells Gate simulators</td>
</tr>
</tbody>
</table>

Design productivity gap

- 1981 leading edge chip required 100 man-months
 - 10,000 transistors / 100 transistors/month
- 2002 leading edge chip requires 30K man-months
 - 150,000,000 / 5000 transistors/month
- Designer cost increase from $1M to $300M
The mythical man-month

- In theory, adding designers to team reduces project completion time.
- In reality, productivity per designer decreases due to complexities of team management and communication overhead.
- In the software community, known as “the mythical man-month” (Brooks 1975).
- At some point, can actually lengthen project completion time!

- 1M transistors, one designer=5000 trans/month.
- Each additional designer reduces for 100 trans/month.
- So 2 designers produce 4900 trans/month each.

GP, ASIP, ASIC: Present a Range

GP…………….. ASIP…………… ASIC

- Programmable controller
 - Control logic is stored in memory
 - Fetch/decode overhead
- Highly general data-path
 - Typical bit-width (8, 16, 32, 64)
 - Complete set of arithmetic/logic units
 - Large set of registers
- High NRE/sale-volume

- Hardwired controller
 - No need for program memory and cache
 - No fetch/decode overhead
- Highly tuned data-path
 - Custom bit-width
 - Custom arithmetic/logic units
 - Custom set of registers
- Low NRE/sale-volume
Need for efficiency (power + energy):

“Power is considered as the most important constraint in embedded systems”

Current UMTS (3-G) phones can hardly be operated for more than an hour, if data is being transmitted.
[from a report of the Financial Times, Germany, on an analysis by Credit Suisse First Boston; http://www.ftd.de/tm/tk/9580232.html?nv=se]
The energy/flexibility Conflict

- Technology: Operations/Watt [MOps/mW]
- Ambient Intelligence
- DSP-ASIPs
- μPs
- poor design generation techniques

Necessary to optimize!

[H. de Man, Keynote, DATE’02; T. Claasen, ISSCC99]
In many cases, faster execution also means less energy, but the opposite may be true if power has to be increased to allow faster execution.

Low Power vs. Low Energy

- Minimize the power consumption
 - design of the power supply
 - design of voltage regulators
 - dimensioning of interconnect
 - short term cooling

- Minimizing the energy consumption
 - restricted availability of energy (mobile systems)
 - limited battery capacities (only slowly improving)
 - very high costs of energy (solar panels, in space)
 - cooling
 - high costs
 - limited space
 - dependability
 - long lifetimes, low temperatures
Storage

- **What is a memory?**
 - Artifact that stores bits
 - Storage fabric and access logic

- **Write-ability**
 - Manner and speed a memory can be written

- **Storage-permanence**
 - Ability of memory to hold stored bits after they are written

- **Many different types of memories**
 - Flash, SRAM, DRAM, etc.

- **Common to compose memories**

Write-ability

- **Ranges of write ability**
 - High end
 - Processor writes to memory simply and quickly
 - E.g., RAM
 - Middle range
 - Processor writes to memory, but slower
 - E.g., FLASH, EEPROM
 - Lower range
 - Special equipment, “programmer”, must be used to write to memory
 - E.g., EPROM, OTP ROM
 - Low end
 - Bits stored only during fabrication
 - E.g., Mask-programmed ROM
Storage-permanence

- **Range of storage permanence**
 - **High end**
 - Essentially never loses bits
 - E.g., mask-programmed ROM
 - **Middle range**
 - Holds bits days/months/years after memory’s power source turned off
 - E.g., NVRAM
 - **Lower range**
 - Holds bits as long as power supplied to memory
 - E.g., SRAM
 - **Low end**
 - Begins to lose bits almost immediately after written
 - E.g., DRAM

Memory Types

- Mask-programmed ROM
- OTP ROM
- EPROM
- EEPROM
- Flash
- NVRAM
- SRAM/DRAM

Nonvolatile	In-system programmable	Ideal

Write-ability

Communication

- What is a bus?
 - An artifact that transfers bits
 - Wires, air, or fiber and interface logic

- Associated with a bus, we have:
 - Connectivity scheme
 - Serial Communication
 - Parallel Communication
 - Wireless Communication
 - Protocol
 - Ports
 - Timing Diagrams
 - Read and write cycles
 - Arbitration scheme, error detection/correction, DMA, etc.

Serial Communication

- A single wire used for data transfer
- One or more additional wires used for control (but, some protocols may not use additional control wires)
- Higher throughput for long distance communication
 - Often across processing node
- Lower cost in terms of wires (cable)
- E.g., USB, Ethernet, RS232, I²C, etc.
Parallel Communication

- Multiple buses used for data transfer
- One or more additional wires used for control
- Higher throughput for short distance communication
 - Data misalignment problem
 - Often used within a processing node
- Higher cost in terms of wires (cable)
- E.g., ISA, AMBA, PCI, etc.

Wireless Communication

- Infrared (IR)
 - Electronic wave frequencies just below visible light spectrum
 - Diode emits infrared light to generate signal
 - Infrared transistor detects signal, conducts when exposed to infrared light
 - Cheap to build
 - Need line of sight, limited range
- Radio frequency (RF)
 - Electromagnetic wave frequencies in radio spectrum
 - Analog circuitry and antenna needed on both sides of transmission
 - Line of sight not needed, transmitter power determines range
Peripherals

- Perform specific computation task
- Custom single-purpose processors
 - Designed by us for a unique task
- Standard single-purpose processors
 - “Off-the-shelf”
 - pre-designed for a common task

Timers

- Timers: measure time intervals
 - To generate timed output events
 - To measure input events
 - Top: max count reached
- Range and resolution
Counters

- **Counter**: like a timer, but counts pulses on a general input signal rather than clock
 - e.g., count cars passing over a sensor
 - Can often configure device as either a timer or counter

![Diagram of Counter Circuit]

Watchdog Timer

- **Must reset timer every X time unit, else timer generates a signal**
- **Common use**: detect failure, self-reset
UART

- **UART: Universal Asynchronous Receiver Transmitter**
 - Takes parallel data and transmits serially
 - Receives serial data and converts to parallel
- **Parity: extra bit for simple error checking**
- **Start bit, stop bit**
- **Baud rate**
 - Signal (or phase) changes per second possible
 - Bit rate, sometimes different (e.g., due to encoding)
 - E.g., older modems: 14400 bps @ 2400 baud
 - Encode 6 bits per signal transition

Pulse Width Modulator (PWM)

- **Generates pulses with specific high/low times**
- **Duty cycle: % time high**
 - Square wave: 50% duty cycle
- **Common use: control average voltage to electric device**
 - Simpler than DC-DC converter or digital-analog converter
 - DC motor speed, dimmer lights
LCD

- Liquid Crystal Display
- N rows by M columns
- Controller build into the LCD module
- Simple microprocessor interface using ports
- Software controlled

Keypad

- N=4, M=4

```plaintext
N1
N2
N3
N4
M1
M2
M3
M4
```
Summary

- Hardware: Information Processing
 - Processors
 - Memories
 - Communication
 - Peripherals

Evaluation and Grading

- 40\% Homeworks
 - 4 HWs, 10\% each

- 30\% ES case study OR ES Project
 - Details in next class
 - Talk to me if you have a specific project in mind

- 30\% Comprehensive Final Exam